ESXi Unattend Install on Dell BOSS controller

I had the opportunity to test a Dell vSAN node. I had a older unattend install esxi iso.
This installed the ESXi OS on the wrong disk.

I hate to type a very complex password twice.
So automation is the key.
I love de ks.cfg install option

Sow following the following guide did not the trik:
https://www.dell.com/support/kbdoc/en-us/000177584/automating-operating-system-deployment-to-dell-boss-techniques-for-different-operating-systems

VMware ESXi Automated Install

This did not work:
install –overwritevmfs –firstdisk=”DELLBOSS VD”

After doing a manual install:
Afbeelding met tekst, schermopname

Automatisch gegenereerde beschrijving

What works:

# For Dell Boss Controller “Dell BOSS-N1″

install –overwritevmfs –firstdisk=”Dell BOSS-N1”

Windows Server 2025 “Preview” deployment with Packer

As Windows Server 2025 Preview is officially released, I wanted to test a  automated build of the Windows Server 2025 Preview release. So that I can deploy this in my home lab and going to test the new features if I can find the time….

About Hashicorp Packer

Hashicorp Packer is a self-contained executable producing quick and easy operating system builds across multiple platforms. Using Packer and a couple of HCL2 files, you can quickly create fully automated template(s) with latest Windows Updates en VMware Tools. When you schedule a fresh builds after patch Tuesday  you have always an up-to-date and fully secured template.

When using VMware customization tools. You can spin up vm’s in minutes.

Automated Windows Server 2025 “Preview” Build

Files you need?
The files and versions I am using at the time of this writing are as follows:

Outside of downloading both Packer and Windows Server 2022 Preview build, you will need the following files:

  • windowsserver2025.auto.pkrvars.hcl – houses the variable values you want to define.
  • windows2025.json.pkr.hcl – the Packer build file
  • Answer file – Generated with Windows System Image Manager (SIM) you can download the file below
  • Custom script file(s) – optional

Other considerations and tasks you will need to complete:

  • Copy the Windows Server 2025 ISO file to a vSphere datastore

Windows Server 2025 unattend Answer file for the automated Packer Build

Like other automated approaches to installing Windows Server, the automated Windows Server 2025 Packer build requires an answer file to provide answers to the GUI automatically and other installation prompts that you normally see in a manual installation of Windows Server.

You will find the scripts here: https://github.com/WardVissers/Packer-Win2025

The only problem that I had was: Switching from Nic from Public to Private

# Set network connections profile to Private mode.

Write-Output ‘Setting the network connection profiles to Private…’

do {

    $connectionProfile = Get-NetConnectionProfile

    Start-Sleep -Seconds 10

} while ($connectionProfile.Name -eq ‘Identifying…’)

Set-NetConnectionProfile -Name $connectionProfile.Name -NetworkCategory Private

VCF 5.0 running inside Nested ESXi server with only 64GB Memory

So I interested to trying to deploy latest release of VMware Cloud Foundation (VCF) 5.0 on my Windows 11 Home PC witch have 128GB and 16 core intel cpu.

William Lee wrote a nice artikel about VMware Cloud Foundation 5.0 running on Intel NUC

Disclaimer: This is not officially supported by VMware, please use at your own risk.

Requirements:

  • VMware Cloud Builder 5.0 OVA (Build 21822418)
  • VCF 5.0 Licenses Through VMUG ADVANTAGE
  • Home PC (Not Special Hardware)
    – 128GB Memory
    – Intel 12600 CPU
    – 4TB of NVME Storage
  • Windows 11 with VMware Workstation 17

Setup

Virtual Machines

  • DC02 (Domain Controller, DNS Server) (4GB 2vcpu)
  • VCF-M01-ESX01 (ESXi 8.0 Update 1a) (64GBGB 1x140GB 2x600NVME 2x NIC) (Every Thin Provisiond)
  • VCF-M01-CB01 (4GB and 4CPU) Only needed through First Deploment

Network settings on my PC

  • 1 IP In my home network
  • 172.16.12.1 (To Fool Cloudbuilder)
  • 172.16.13.1 (To Fool Cloudbuilder)

Procedure:

Install en Configure ESXi

Step 1 – Boot up the ESXi installer from de iso mount and then perform a standard ESXi installation.

Step 2 – Once ESXi is up and running, you will need to minimally configure networking along with an FQDN (ensure proper DNS resolution), NTP and specify which SSD should be used for the vSAN capacity drive. You can use the DCUI to setup the initial networking but recommend switching to ESXi Shell afterwards and finish the require preparations steps as demonstrated in the following ESXCLI commands:

esxcli system ntp set -e true -s pool.ntp.org
esxcli system hostname set –fqdn vcf-m01-esx01.wardvissers.nl

Note: Use vdq -q command to query for the available disks for use with vSAN and ensure there are no partitions residing on the 600GB disks.
Don’t change time server pool.ntp.org.

To ensure that the self-signed TLS certificate that ESXi generates matches that of the FQDN that you had configured, we will need to regenerate the certificate and restart hostd for the changes to go into effect by running the following commands within ESXi Shell:

/bin/generate-certificates
/etc/init.d/hostd restart

Cloudbuilder Config

Step 3 – Deploy the VMware Cloud builder in a separate environment and wait for it to be accessible over the browser. Once CB is online, download the setup_vmware_cloud_builder_for_one_node_management_domain.sh setup script and transfer that to the CB system using the admin user account (root is disabled by default).

Step 4 – Switch to the root user and set the script to have the executable permission and run the script as shown below

su –
chmod +x setup_vmware_cloud_builder_for_one_node_management_domain.sh
./setup_vmware_cloud_builder_for_one_node_management_domain.sh

The script will take some time, especially as it converts the NSX OVA->OVF->OVA and if everything was configured successfully, you should see the same output as the screenshot above.

A screenshot of a computer

Description automatically generated

Step 4 – Download the example JSON deployment file vcf50-management-domain-example.json and and adjust the values based on your environment. In addition to changing the hostname/IP Addresses you will also need to replace all the FILL_ME_IN_VCF_*_LICENSE_KEY with valid VCF 5.0 license keys.

Step 5 – The VMnic in the Cloud Builder VM will acked als a 10GB NIC so I started the deployment not through powershell but normal way in Cloud Builder GUI.

Your deployment time will vary based on your physical resources but it should eventually complete with everything show success as shown in the screenshot below. (I have one retry for finish)
A screenshot of a computer

Description automatically generated A screenshot of a cloud support

Description automatically generated
Here are some screenshots VCF 5.0 deployment running on my home PC.

A screenshot of a computer

Description automatically generated

A screenshot of a computer

Description automatically generated

Problems

Check this if you have problems logging in NSX:
https://www.wardvissers.nl/2023/07/26/nsx-endless-spinning-blue-cirle-after-login/

Next Steps.

1. Reploy with use of the Holo-Router https://core.vmware.com/resource/holo-toolkit-20-deploy-router#deploy-holo-router

2. Testing if can deploy Single Host VCF Workload Domain, on same way by following this blog post HERE! 😁
A screenshot of a computer

Description automatically generated

If I can start another 64GB ESXi Server.

Holodeck Toolkit Overview

Holodeck Toolkit 1.3 Overview

The VMware Cloud Foundation (VCF) Holodeck Toolkit is designed to provide a scalable, repeatable way to deploy nested Cloud Foundation hands-on environments directly on VMware ESXi hosts. These environments are ideal for multi-team hands on exercises exploring the capabilities of utilitizing VCF to deliver a Customer Managed VMware Cloud.

Graphical user interface, application

Description automatically generated

Delivering labs in a nested environment solves several challenges with delivering hands-on for a  product like VCF, including:  

  • Reduced hardware requirements: When operating in a physical environment, VCF requires four vSAN Ready Nodes for the management domain, and additional hosts for adding clusters or workload domains. In a nested environment, the same four to eight hosts are easily virtualized to run on a single ESXi host.   
  • Self-contained services: The Holodeck Toolkit configuration provides common infrastructure services, such as NTP, DNS, AD, Certificate Services and DHCP within the environment, removing the need to rely on datacenter provided services during testing.  Each environment needs a single external IP.
  • Isolated networking. The Holodeck Toolkit configuration removes the need for VLAN and BGP connections in the customer network early in the testing phase.  
  • Isolation between environments. Each Holodeck deployment is completely self-contained. This avoids conflicts with existing network configurations and allows for the deployment of multiple nested environments on same hardware or datacenter with no concerns for overlap. 
  • Multiple VCF deployments on a single VMware ESXi host with sufficient capacity. A typical VCF Standard Architecture deployment of four node management domain and four node VI workload domain, plus add on such as VMware vRealize Automation requires approximately 20 CPU cores, 512GB memory and 2.5TB disk.  
  • Automation and repeatability. The deployment of nested VCF environments is almost completely hands-off, and easily repeatable using configuration files.  A typical deployment takes less than 3 hours, with less than 15 min keyboard time.

Nested Environment Overview 

The “VLC Holodeck Standard Main 1.3” configuration is a nested VMware Cloud Foundation configuration used as the baseline for several Private Cloud operation and consumption lab exercises created by the Cloud Foundation Technical Marketing team. The Holodeck standard “VLC-Holo-Site-1” is the primary configuration deployed. The optional VLC-Holo-Site-2 can be deployed at any time later within a Pod.  VLC-Holo-Site-1 configuration matches the lab configuration in the VCF Hands-On Lab HOL-2246 and the nested configuration in the VCF Experience program run on the VMware Lab Platform. 

Each Pod on a Holodeck deployment runs an identical nested configuration. A pod can be deployed with a standalone VLC-Holo-Site-1 configuration, or with both VLC-Holo-Site-1 and VLC-Holo-Site-2 configurations active. Separation of the pods and between sites within a pod is handled at the VMware vSphere Standard Switch (VSS) level.  Each Holodeck pod connects to a unique VSS and Port Group per site.    A VMware vSphere Port Group is configured on each VSS and configured as a VLAN trunk.  

  • Components on the port group to use VLAN tagging to isolate communications between nested VLANs. This removes the need to have physical VLANs plumbed to the ESXi host to support nested labs.  
  • When the Holo-Site-2 configuration is deployed it uses a second VSS and Port Group for isolation from Holo-Site-1  

The VLC Holodeck configuration customizes the VCF Cloud Builder Virtual Machine to provide several support services within the pod to remove the requirement for specific customer side services. A Cloud Builder VM is deployed per Site to provide the following within the pod: 

  • DNS (local to Site1 and Site2 within the pod, acts as forwarder) 
  • NTP (local to Site1 and Site2 within the pod) 
  • DHCP (local to Site1 and Site2 within the pod) 
  • L3 TOR for vMotion, vSAN, Management, Host TEP and Edge TEP networks within each site 
  • BGP peer from VLC Tier 0 NSX Application Virtual Network (AVN) Edge (Provides connectivity into NSX overlay networks from the lab console)

The figure below shows a logical view of the VLC-Holo-Site-1 configuration within a Holodeck Pod. The Site-1 configuration uses DNS domain vcf.sddc.lab.

 Figure 1: Holodeck Nested Diagram

The Holodeck package also provides a preconfigured Photon OS VM, called “Holo-Router”, that functions as a virtualized router for the base environment. This VM allows for connecting the nested environment to the external world. The Holo-Router is configured to forward any Microsoft Remote Desktop (RDP) traffic to the nested jump host, known as the Holo-Console, which is deployed within the pod.

The user interface to the nested VCF environment is via a Windows Server 2019 “Holo-Console” virtual machine. Holo-Console provides a place to manage the internal nested environment like a system administrators desktop in a datacenter. Holo-Console is used to run the VLC package to deploy the nested VCF instance inside the pod. Holo-Console VM’s are deployed from a custom-built ISO that configures the following 

  • Microsoft Windows Server 2019 Desktop Experience with: 
  • Active directory domain “vcf.holo.lab” 
  • DNS Forwarder to Cloud Builder  
  • Certificate Server, Web Enrollment and VMware certificate template 
  • RDP enabled 
  • IP, Subnet, Gateway, DNS and VLAN configured for deployment as Holo-Console  
  • Firewall and IE Enhanced security disabled  
  • SDDC Commander custom desktop deployed 
  • Additional software packages deployed and configured 
  • Google Chrome with Holodeck bookmarks 
  • VMware Tools 
  • VMware PowerCLI 
  • VMware PowerVCF 
  • VMware Power Validated Solutions 
  • PuTTY SSH client 
  • VMware OVFtool 
  • Additional software packages copied to Holo-Console for later use 
  • VMware Cloud Foundation 4.5 Cloud Builder OVA to C:\CloudBuilder 
  • VCF Lab Constructor 4.5.1 with dual site Holodeck configuration
    • VLC-Holo-Site-1 
    • VLC-Holo-Site-2 
  • VMware vRealize Automation 8.10 Easy Installer

The figure below shows the virtual machines running on the physical ESXi host to deliver a Holodeck Pod called “Holo-A”. Notice an instance of Holo-Console, Holo-Router, Cloud Builder and four nested ESXi hosts.  They all communicate over the VLC-A-PG Port Group   

Figure 2: Holodeck Nested Hosts

Adding a second site adds an additional instance of Cloud Builder and additional nested ESXi hosts. VLC-Holo-Site-2 connects to the second internal leg of the Holo-Router on VLAN 20. Network access from the Holo-Console to VLC-Holo-Site-2 is via Holo-Router.

The figure below shows a logical view of the VLC-Holo-Site-2 configuration within a Holodeck Pod. The Site-2 configuration uses DNS domain vcf2.sddc.lab

 Figure 3: Holodeck Site-2 Diagram

Accessing the Holodeck Environment

User access to the Holodeck pod is via the Holo-Console.  Access to Holo-Console is available via two paths:

VLC Holodeck Deployment Prerequisites 

  • ESXi Host Sizing   
  • Good (One pod): Single ESXi host with 16 cores, 384gb memory and 2TB SSD/NVME 
  • Better (Two pod): Single ESXi host with 32 cores, 768gb memory and 4TB SSD/NVME 
  • Best (Four or more pods):  Single ESXi host with 64+ cores, 2.0TB memory and 10TB SSD/NVME 
  • ESXi Host Configuration: 
  • vSphere 7.0U3 
  • Virtual switch and port group configured with uplinks to customer network/internet  
  • Supports stand alone, non vCenter Server managed host and single host cluster managed by a vCenter server instance 
  • Multi host clusters are NOT supported
  • Holo-Build host 
  • Windows 2019 host or VM with local access to ESXI hosts used for Holodeck + internet access to download software. (This package has been tested on Microsoft Windows Server 2019 only) 
  • 200GB free disk space 
  • Valid login to https://customerconnect.vmware.com  
  • Entitlement to VCF 4.5 Enterprise for 8 hosts minimum (16 hosts if planning to test Cloud Foundation Multi region with NSX Federation) 
  • License keys for the following VCF 4.5 components
    • VMware Cloud Foundation
    • VMware NSX-T Data Center Enterprise
    • VMware vSAN Enterprise 
    • VMware vSphere Enterprise Plus 
    • VMware vCenter Server (one license)
    • VMware vRealize Suite Advanced or Enterprise
    • Note: This product has been renamed VMware Aria Suite
  • External/Customer networks required
    • ESXi host management IP (one per host) 
    • Holo-Router address per pod

Building NSX-T 3.1 Home lab Step 1

I’m doing a mini-series on my NSX-T home lab setup. It’s only for testing en knowledge about NXS-T.

With newer versions of NSX-T 3.1 and later a couple of enhancements have been made that makes the setup a lot easier, like the move to a single N-VDS with the ability to run NSX on a Virtual Distributed Switch (VDS) in vCenter with VDS version 7.0.

In NSX-T 3.11 we got the ability to have the Edge TEP on the same subnet as the hypervisor TEP. A nice write-up of this feature can be found here: https://www.virten.net/2020/11/nsx-t-3-1-enhancement-shared-esxi-and-edge-transport-vlan-with-a-single-uplink/

Lab environment

First let’s have a quick look at the lab environment:

Compute

I have 1 have one ESXi Server Dell Server R730. I use only one nic for Management en Virtual Machine Traffic.

Network

My home network consists of single VLAN

VLAN

Subnet

Role

Virtual Switch

0

192.168.150.0/24

Management/Virtual Machine Traffic

vSwitch0

 Also ensure you enable the required security settings to support nested virtualization:

Virtual Machines

I run a virtualized vSphere 7 Cluster on my host

Afbeelding met tekst

Automatisch gegenereerde beschrijving

The Distributed Virtual Switches are running version 7.0.0 which let’s us deploy NSX-T on the VDS directly.

Afbeelding met tekst

Automatisch gegenereerde beschrijving

Afbeelding met tafel

Automatisch gegenereerde beschrijving

Preparations

Check out the NSX-T Data Center Workflow for vSphere for details and documentation on the process

IP Addresses and DNS records

Before deploying NSX-T in the environment I’ve prepared a few IP addresses and DNS records

Role

IP

NSX Manager

192.168.150.229

NSX-T Edge node 1

192.168.150.227

NSX-T Edge node 2 (currently not in use)

192.168.150.228

NSX-T T0 GW Interface 1

192.168.99.2

Note that I’ve reserved addresses for a second Edge which I’m not going to use at the moment.

Deploy NSX manager appliance

VMware documentation reference

The NSX manager appliance has been downloaded and imported the OVF to the cluster. I won’t go into details about this, I just followed the deployment wizard.

In my lab I’ve selected to deploy a small appliance which requires 4 vCPUs, 16 GB RAM and 300 GB disk space. For more details about the NSX Manager requirements look at the official documentation

Note that I’ll not be deploying a NSX Manager cluster in my setup. In a production environment you should naturally follow best practices and configure a cluster of NSX Managers

NSX-T deployment

Now let’s get rocking with our NSX-T setup!

We’ll start the NSX manager and prepare it for configuring NSX in the environment

Initial Manager config

After first login I’ll accept the EULA and optionally enable the CEIP

License

Next I’ll add the license.

Add license

Import certificate

Imported certificates

IP Pools

Our Endpoints will need IP addresses and I’ve set aside a subnet for this as mentioned. In NSX Manager we’ll add an IP pool with addresses from this subnet. (The IP pool I’m using is probably way larger than needed in a lab setup like this)

Afbeelding met tekst, schermafbeelding, monitor

Automatisch gegenereerde beschrijving

TEP pool

Compute Manager

With all that sorted we’ll connect the NSX manager to our vCenter server so we can configure our ESXi hosts and deploy our edge nodes.

Best is a specific service account for the connection

Afbeelding met tekst, monitor, schermafbeelding, scherm

Automatisch gegenereerde beschrijving

Compute Manager added

Fabric configuration

Now we’re ready for building out our network fabric which will consist of the following:

Transport Zones

Overlay

VLAN

Transport Nodes

ESXi Hosts

Edge VMs

Edge clusters

Take a look at this summary of the Key concepts in NSX-T to learn more about them.

Transport Zone

The first thing we’ll create are the Transport Zones. These will be used later on multiple occasions later on. A Transport Zone is used as a collection of hypervisor hosts that makes up the span of logical switches.

The defaults could be used, but I like to create my own.

Afbeelding met tekst, monitor, schermafbeelding, scherm

Automatisch gegenereerde beschrijving

Transport Zones

Uplink Profiles

Uplink profiles will be used when we configure our Transport Nodes, both Hosts and Edge VMs. The profile defines how a Host Transport node (hypervisor) or an Edge Transport node (VM) will connect to the physical network.

Again I’m creating my own profile and leave the default profiles be as they are.

Afbeelding met tekst, monitor, zwart, schermafbeelding

Automatisch gegenereerde beschrijving

Uplink profile

In my environment I have only one Uplink to use. Note that I’ve set the Transport VLAN to 0 which also corresponds with the TEP VLAN mentioned previously.

Transport Node Profile

Although not strictly needed, I’m creating a Transport Node profile which will let me configure an entire cluster of hosts with the same settings instead of having to configure each and every host

In the Transport Node profile we first select the type of Host switch. In my case I’m selecting the VDS option, which will let me select a specific switch in vCenter.

We’ll also add in our newly created Transport Zones

Afbeelding met tekst

Automatisch gegenereerde beschrijving

Creating Transport Node profile

We’ll select our Uplink profile and our IP Pool which we created earlier, finally we can set the mapping between the Uplinks

vCenter View

Creating Transport Node profile

Configure NSX on hosts

With our Transport Node profile we can go ahead and configure our ESXi hosts for NSX

Configure cluster for NSX

Afbeelding met tekst

Automatisch gegenereerde beschrijving

Select profile

After selecting the profile NSX Manager will go ahead and configure our ESXi hosts.

Hosts configuring

After a few minutes our hosts should be configured and ready for NSX

Afbeelding met tekst, schermafbeelding, monitor, scherm

Automatisch gegenereerde beschrijving

Hosts configured

Trunk segment

Next up is to create our Edge VMs which we will need for our Gateways and Services (NAT, DHCP, Load Balancer).

But before we deploy those we’ll have to create a segment for the uplink of the Edge VMs. This will be a Trunk segment which we create in NSX. Initially I created a Trunk portgroup on the VDS in vSphere, but that doesn’t work. The Trunk needs to be configured as a logical segment in NSX-T when using the same VLAN for both the Hypervisor TEPs and the Edge VM TEPs

Afbeelding met tekst

Automatisch gegenereerde beschrijving

Trunk segment

Edge VM

Now we can deploy our Edge VM(s). I’m using Medium sized VMs in my environment. Note that the Edge VMs is not strictly necessary for the test we’ll perform later on with connecting two VMs, but if we want to use some services later on, like DHCP, Load balancing and so on we’ll need them.

Deploy edge VM

Deploy edge VM

Note the NSX config, where we set the switch name, the Transport Zones we created, the Uplink profile, the IP pool and finally we use the newly created Trunk segment for the Edge uplink

NSX Edge config

Edge cluster

We’ll also create an Edge cluster and add the Edge VM to it

Edge cluster

Summary

Wow, this was a lot of configuring, but that was also the whole point of doing this blog post. Stuff like this is learnt best while getting your hands dirty and do some actual work. And I learn even better when I’m writing and documenting it as well.

In the next blog post we’ll test the fabric to see if what we’ve done is working. We’ll also try to get some external connectivity to our environment.

Hopefully this post can help someone, if not it has at least helped me.

Thanks for reading!

Special thnx for https://rudimartinsen.com/2021/06/29/nsx-t-31-homelab/ for his blog post

Important information before upgrading to vSphere 6.7 (KB53704)

This article provides important documentation and upgrade information that must be reviewed before upgrading to vSphere 6.7.


Resolution


Compatibility considerations

TLS protocols

These products are not compatible with vSphere 6.7 at this time:

  • VMware NSX
  • VMware Integrated OpenStack (VIO)
  • VMware vSphere Integrated Containers (VIC)
  • VMware Horizon

Environments with these products should not be upgraded to vSphere 6.7 at this time. This article and the VMware Product Interoperability Matrixes will be updated when a compatible release is available.

Upgrade Considerations

Before upgrading your environment to vSphere 6.7, review these critical articles to ensure a successful upgrade
For vSphere

Upgrades to vSphere 6.7 are only possible from vSphere 6.0 or vSphere 6.5. If you are currently running vSphere 5.5, you must first upgrade to either vSphere 6.0 or vSphere 6.5 before upgrading to vSphere 6.7.

For vCenter Server

For Distributed Virtual Switches

VMware OS Optimization Tool Version b1097 Released

2018-03-30, VMware announced a new version of the VMware OS Optimization Tool meaning the latest and greatest version is now b1097.

Fixes and enhancements to this version includes:

  • [Template] Issue fix – DELETEVALUE actions do not do anything
  • [Template] Issue fix – DISM commands missing /NoRestart switch
  • [Tool] Issue fix – Switching to another tab loses all unsaved changes
  • [Tool] Enhancement – Simplify user interaction in Template Editor. Now editing template no longer requires repeated Update button click. Mac style editing is applied (Automatically save changes along with edit)

For those of you not aware of this tool it is used to optimise Windows 7/8/2008/2012/10 for Horizon View deployments and it performs the following actions:

  • Local Analyze/Optimize
  • Remote Analyze
  • Optimization History and Rollback
  • Managing Templates

Read more and download VMware OS Optimization Tool Version b1097 here.

Microsoft Deployment Toolkit 8450 Now Available

The Microsoft Deployment Toolkit (MDT), build 8450, is now available on the Microsoft Download Center. This update supports the Windows Assessment and Deployment Kit (ADK) for Windows 10, version 1709, available on the Microsoft Hardware Dev Center(adksetup.exe file version 10.1.16299.15).

Here is a summary of the significant changes in this build of MDT:

  • Supported configuration updates
    • Windows ADK for Windows 10, version 1709
    • Windows 10, version 1709
    • Configuration Manager, version 1710
  • Quality updates (titles of bug fixes)
    • Win10 Sideloaded App dependencies and license not installed
    • CaptureOnly task sequence doesn’t allow capturing an image
    • Error received when starting an MDT task sequence: Invalid DeploymentType value “” specified. The deployment will not proceed
    • ZTIMoveStateStore looks for the state store folder in the wrong location causing it to fail to move it
    • xml contains a simple typo that caused undesirable behavior
    • Install Roles & Features doesn’t work for Windows Server 2016 IIS Management Console feature
    • Browsing for OS images in the upgrade task sequence does not work when using folders
    • MDT tool improperly provisions the TPM into a Reduced Functionality State (see KB 4018657 for more information)
    • Updates to ZTIGather chassis type detection logic
    • Upgrade OS step leaves behind SetupComplete.cmd, breaking future deployments
    • Includes updated Configuration Manager task sequence binaries

See the following post on How to get help with MDT.

Exchange Server 2016 Cumulative Update 7 (KB4018115) and Exchange Server 2013 Cumulative Update 18 (KB4022631)

The latest set of Cumulative Updates for Exchange Server 2016 and Exchange Server 2013 are now available on the download center.  These releases include fixes to customer reported issues, all previously reported security/quality issues and updated functionality.

Minimum supported Forest Functional Level is now 2008R2

In our blog post, Active Directory Forest Functional Levels for Exchange Server 2016, we informed customers that Exchange Server 2016 would enforce a minimum 2008R2 Forest Functional Level requirement for Active Directory.  Cumulative Update 7 for Exchange Server 2016 will now enforce this requirement.  This change will require all domain controllers in a forest where Exchange is installed to be running Windows Server 2008R2 or higher.  Active Directory support for Exchange Server 2013 remains unchanged at this time.

Support for latest .NET Framework

The .NET team is preparing to release a new update to the framework, .NET Framework 4.7.1.  The Exchange Team will include support for .NET Framework 4.7.1 in our December Quarterly updates for Exchange Server 2013 and 2016, at which point it will be optional.  .NET Framework 4.7.1 will be required on Exchange Server 2013 and 2016 installations starting with our June 2018 quarterly releases.  Customers should plan to upgrade to .NET Framework 4.7.1 between the December 2017 and June 2018 quarterly releases.

The Exchange team has decided to skip supporting .NET 4.7.0 with Exchange Server.  We have done this not because of problems with the 4.7.0 version of the Framework, rather as an optimization to encourage adoption of the latest version.

Known unresolved issues in these releases

The following known issues exist in these releases and will be resolved in a future update:

  • Online Archive Folders created in O365 will not appear in the Outlook on the Web UI
  • Information protected e-Mails may show hyperlinks which are not fully translated to a supported, local language

Release Details

KB articles that describe the fixes in each release are available as follows:

Exchange Server 2016 Cumulative Update 7 does not include new updates to Active Directory Schema.  If upgrading from an older Exchange version or installing a new server, Active Directory updates may still be required.  These updates will apply automatically during setup if the logged on user has the required permissions.  If the Exchange Administrator lacks permissions to update Active Directory Schema, a Schema Admin must execute SETUP /PrepareSchema prior to the first Exchange Server installation or upgrade.  The Exchange Administrator should execute SETUP /PrepareAD to ensure RBAC roles are current.

Exchange Server 2013 Cumulative Update 18 does not include updates to Active Directory, but may add additional RBAC definitions to your existing configuration. PrepareAD should be executed prior to upgrading any servers to Cumulative Update 18. PrepareAD will run automatically during the first server upgrade if Exchange Setup detects this is required and the logged on user has sufficient permission.

Additional Information

Microsoft recommends all customers test the deployment of any update in their lab environment to determine the proper installation process for your production environment. For information on extending the schema and configuring Active Directory, please review the appropriate TechNet documentation.

Also, to prevent installation issues you should ensure that the Windows PowerShell Script Execution Policy is set to “Unrestricted” on the server being upgraded or installed. To verify the policy settings, run the Get-ExecutionPolicy cmdlet from PowerShell on the machine being upgraded. If the policies are NOT set to Unrestricted you should use the resolution steps in KB981474 to adjust the settings.

Reminder: Customers in hybrid deployments where Exchange is deployed on-premises and in the cloud, or who are using Exchange Online Archiving (EOA) with their on-premises Exchange deployment are required to deploy the most current (e.g., 2013 CU18, 2016 CU7) or the prior (e.g., 2013 CU17, 2016 CU6) Cumulative Update release.

For the latest information on Exchange Server and product announcements please see What’s New in Exchange Server 2016 and Exchange Server 2016 Release Notes.  You can also find updated information on Exchange Server 2013 in What’s New in Exchange Server 2013, Release Notes and product documentation available on TechNet.

Note: Documentation may not be fully available at the time this post is published.

Windows ADK 1703 and Windows 10 Creators Update 1703

Introduction

Microsoft have released both Windows 10 version 1703 and ADK 1703 last week, one is on MSDN the other on Microsoft’s download site.

Download the media

Two Know Issues:
OSD – App-V tools are missing in ADK 1703 when being installed on Windows Server 2016 (sometimes)

OS Deployment – Installing ADK 1703 on Windows Server 2016 could fail

Translate »